Faculté SNV-STU AU 2018-2019

Département STU

 $\mathbf{1}^{\grave{\mathrm{e}}re}$ année LMD STU

Les suites numériques

Exercice 1:

Calculer les trois premiers termes des suites suivantes :

1)
$$U_n = \frac{n^2+1}{n-1}$$
 , $n > 1$

2)
$$U_n = (-1)^n$$

3)
$$U_n = \cos(\pi n)$$

4)
$$U_n = \sqrt{3 + U_{n-1}}$$
 , $U_0 = 1$

5)
$$U_n = 2e^{\sqrt{3}}$$

Exercice 2:

Etudier la monotonie des suites suivantes :

1)
$$U_n = \sqrt{n+1} + \sqrt{n}$$

2)
$$U_{n+1}=-2+U_n$$
 , $U_0=0$

6)
$$U_n = (-1)^n$$

Exercice 3:

Etudier la nature des suites suivantes en calculant la limite du terme général

1)
$$U_n = \frac{3n^2 + 2n - 4}{2n - 1}$$
 2) $U_n = \frac{n - 1}{n^2 + 1}$ 3) $U_n = \frac{\ln(n)}{n}$ 4) $U_n = \ln(n)$

5)
$$U_n = (-1)^n$$
 6) $U_n = \frac{n}{2} \sin(\frac{\pi n}{2})$ 7) $U_n = \frac{2}{n} \sin(\frac{\pi n}{2})$

Exercice 4:

On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{3U_n + 4} \ , \ \forall n \in N \end{cases}$$

1)Montrer que la suite $(U_n)_{n\in\mathbb{N}}$ est croissante.

2) Montrer que la suite $(U_n)_{n\in\mathbb{N}}$ est majorée par le nombre 4.

3)Quelle est la limite de $(U_n)_{n \in N}$.